Spin Quantization in a Classical Model

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin foam model from canonical quantization

We suggest a modification of the Barrett-Crane spin foam model of 4-dimensional Lorentzian general relativity motivated by the canonical quantization. The starting point is Lorentz covariant loop quantum gravity. Its kinematical Hilbert space is found as a space of the so-called projected spin networks. These spin networks are identified with the boundary states of a spin foam model and provide...

متن کامل

Quantization via Classical Orbits

A systematic method for calculating higher-order corrections of the relativistic semiclassical fixed-energy amplitude is given. The central scheme in computing corrections of all orders is related to a time ordering operation of an operator involving the Van Vleck determinant. This study provides us a new viewpoint for quantization. PACS 03.20.+i; 04.20.Fy; 02.40.+m Typeset using REVTEX ∗e-mail...

متن کامل

Quantization of Classical Curves

We discuss the relation between quantum curves (defined as solutions of equation [P,Q] = ~, where P,Q are ordinary differential operators) and classical curves. We illustrate this relation for the case of quantum curve that corresponds to the (p, q)minimal model coupled to 2D gravity.

متن کامل

Spin, Statistics, and the Spin Quantization Frame

The spin-statistics connection is derived in a simple manner under the postulates that (1) the state vectors are only superposed with the plus sign, and (2) not only a common spin quantization axis but a complete quantization frame has to be specified. This means that the orientation of the spin states in the plane normal to the quantization axis has to be specified. Before the state vectors ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Applied Physics

سال: 2021

ISSN: 2684-4451

DOI: 10.24018/ejphysics.2021.3.1.47